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ABSTRACT 

A set in a product space ~ x ~¢ is bi-convex if all its x- and y-sections are 
convex. A bi-martingale is a martingale with values in ~ × ~ whose x- and 
y-coordinates change only one at a time. This paper investigates the limiting 
behavior of bimartingales in terms of the bi-convex hull of a set - -  the smallest 
bi-convex set containing it - -  and of several related concepts generalizing the 
concept of separation to the bi-convex case. 

O. Introduction 

Let :T and o~ be compac t  convex subsets of Eucl idean spaces (usually of 

different dimensions),  with generic e lements  x and y. A subset of ~f × • is 

bi-convex if each of its x-  and y-sect ions  is convex. The  hi-convex hull of a set is 

the smallest bi-convex set containing it. A real funct ion f (x ,  y)  on a bi-convex 

subset of ~f x ~ is bi-convex if it is convex in each variable x and y separately.  

A bi-martingale is a mart ingale with values in ~ f×  ~ whose x-  and y-  

coordinates  change only one at a time. (For detailed definitions and illustrative 

examples,  see Sections 1, 2 and 3.) 

These concepts  arise in the analysis of  repea ted  games of  incomplete  

informat ion [3], In this paper  we explore the relationships be tween  them. 

A mart ingale can be viewed as a splitting process. A particle (mass point)  in 

space splits into several new particles, whose centroid  is the starting point.  Each  

of  the new particles then splits, and the process is repea ted  again and again. 
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Eventually a cloud forms; if we confine ourselves to a bounded subset of space, 

then by the martingale convergence theorem, the cloud converges to a limit 

cloud. At each stage, the starting point is the centroid of the cloud, and therefore 

lies in its convex hull. It also lies in the convex hull of the limit cloud. (Here, mass 

corresponds to probability, and centroid to expectation.) 
If the martingale is a hi-martingale, at each stage either all particles split 

"horizontally", or all particles split "vertically". Therefore, at each stage the 

starting point is in the bi-convex hull of the cloud. Rather surprisingly, though, it 

need not be in the bi-convex hull of the limit cloud (see Example 2.5). This is so 

even in the special case in which the bi-martingale is almost  finite (i.e. the mass 
that continues to split after n stages tends to 0 as n -~  oo). 

Given the limit cloud, what can we say about the starting point? To answer 

this question, we must examine more carefully the notion of convex hull and its 

generalizations to bi-convexity. The convex hull co (A) of a set A can be defined 

as the smallest convex set containing A ; this is the definition that corresponds to 

the definition of bi-convex hull given above. But co (A) can also be defined by a 
process of separation, as follows: First, one removes all the points z that can be 

strictly separated from A by a convex function f (i.e., f ( z ) >  supf(A)).  This 
yields the closed convex hull BI of A ; obviously B1 D A. Define B2 by removing 

from B~ all points that can be strictly separated from A by a convex function 

defined on B~ only. The reader mayconvince himself that iterated finitely often, 

this process leads to co (A), where it ends. 

One may also apply this process of separation to bi-convexity, substituting 

bi-convex functions for convex functions. The process may then require trans- 

finitely many iterations; but it, too, must eventually end. We call the result 

bi-co~(A ); it always contains hi-co (A), but, unlike in the case of convexity, it is 

in general different (Example 2.5). 
Suppose that in the iterative process that leads to co (A), we limit ourselves to 

separating functions that, in addition to being convex, are continuous. Then it 

may be seen that we will never get beyond the closed convex hull - -  the first 

iteration will also be the last. But if we demand that the separating functions be 

continuous only on A, then again, a finite number of iterations lead to co (A). 

Similarly, in the case of bi-convexity we may separate by bi-convex functions 

that are continuous on A. Again, the process must converge (after a possibly 

transfinite number of stages). The result, which we call bi-co*(A), may be 

different both from bi-co (A) and from bi-co#(A) (see Section 5); of course, 

bi-co (A) C bi-co" (A) C bi-co* (A). 

Our main results (Section 4) may now be stated as follows: 
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(1) If A is the limit cloud of a hi-martingale, then the set of all possible 

starting points is bi-co*(A) (see Theorem 4.7). 

(2) If we restrict ourselves to bi-martingales that are almost finite (see 
definition above), then the set of all possible starting points is bi-co~'(A) 
(Theorem 4.3). 

To complete the picture, we note that 

(3) If we restrict ourselves to finite hi-martingales (i.e. those that actually 

remain fixed after a bounded number of stages), then the set of all possible 

starting points is bi-co (A). 

1. Bi-martingales 

Let ~ and ~ be compact convex subsets of some Euclidean spaces (of 

different dimensions, in general). Let (1~, ~, P)  be an atomless probability space. 

A sequence {Z,}7=I-{(X, ,  Y,)}~=~ of ( ~ x  ~)-valued random variables is a 

bi-martingale if: 

(1.1) There exists a non-decreasing sequence {o~n}~=~ of finite 

subfields ~ of ~, such that {Z, }, is a martingale with respect to 

(1.2) For each n = 1, 2 . . . .  , either X~ = X,+I or Y. = Y.+~ (a.s.). 

(1.3) Z1 is constant (a.s.). 

The martingale condition (1.1) means, first, that Z,  is f t . -measurable,  and 

second, that E(Z~+11.~) = Zn (a.s.), for all n = 1,2 . . . . .  By (1.3), we thus have 
E(Zn)  = ZI for all n. Since ~ and ~ are compact, the sequence {Z~} forms a 

bounded martingale, hence it has an almost everywhere limit Z®----(X®, Y~). 

Let A now be a measurable subset of • x 0~. We will consider the following 

set: 

(1.4) A * = {z ~ ~ × ~ I there exists a bi-martingale { Z n } ~  converging 
to Z~, such that Z® E A and Zt = z (a.s.)}. 

Without condition (1.2), A*  becomes just co(A) ,  the convex hull 2 of A ;  the 

A field is finite if it contains finitely many elements;  this finiteness condition will turn out  to be 
inessential - -  see Remark  4.11. 

2 Indeed, every point in c o ( A ) c a n  be obtained (by Caratheodory 's  theorem).  Conversely, we 
have z = E(Z®) where P(Z®E A )  = 1, which implies z E/T6(A)  (=  the closed convex hull of A) .  If 
z ~ co (A),  then there exists a supporting hyperplan¢, i.e., A ~ 0 such that A • z = sup {A • a I a • A }. 
But  this implies P(Z®EA')=I, where A'={aEA I)t.a=A.z}, and A '  is a set of lower 
dimension than A. The proof is now completed by induction. 
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same will happen if we drop (1.3) (and replace Z, = z by E ( Z , ) =  z in the 

definition of A *). However,  the set A* as given by (1.4) is in general strictly 

included in co(A) .  For example, as we will see later, if we take ~ = ~ = [0, 1] 

and A = {(0, 0), (1, 0), (0,1)}, then A* is the L-shaped set { ( x , y ) E [ 0 , 1 ] x  

[0,1llx =0  or y --0). 

REMARK 1.5. One can represent a bi-martingale {Zo}~=~ as a rooted tree, 

with the values of Z, attached to its nodes at level n, and the probabilities 

P(Zo+,[ ~o) attached to its branches from there. For example, see Fig. 1.1, 
where 

1 = Ot'l + B1 ! 2 1 2 2 • =a~+~=a~+~=.. .;  O<=,,,,~,,,~,~,a~,~, . . . . .  

1 1 1 I 2 . z , = a , z , + f l , z ~ ,  z ~ = a ~ z , + ~ z ,  . . . . .  

Zt" Z ~  

/ X' ' 
Zs: Z3 

' zH \z ~, zIl ~z: Z,: z',l Xz ~, z~t ~z -,. . . . .  

Fig. 1.1. 

and (writing z~ ~ (x{, y~)) 

X1 = X~ ~--- X 2 2 4 2, y'~ = y~ = y , ,  y~ = y~ = y ,  . . . . .  

Note that the total probability of each node is the product of the probabilities 

along the unique path connecting the node to the root. 

Conversely, each such tree structure gives rise to a bi-martingale; this is the 

(only) reason we required P to be an atomless measure. It follows that the 

specific choice of the probability space is of no consequence, as long as it is 
atomless. Thus, A * is determined by distributions of bi-martingales, and not by 

the bi-martingales themselves. 
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REMARK 1.6. If {Z,}~=~ is a bi-martingale, Zn ~ Z~ and Zn E A a.s., then 

Zo E A * for all n. But A * C co (A), therefore A * does not change if we replace 

~f and ~ by other compact convex sets whose product contains A. 

REMARK 1.7. Call a bi-martingale binary if all nodes in the associated tree 

(cf. Remark 1.5) have at most two immediate successors. Note that A * does not 

change if we consider only binary bi-martingales. The interest in these is due to 

the following: Let {Z,}~=~ be a sequence of (oT x ~)-valued random variables, 

where Z,  =- (Xn, Yo), and denote by X~ ~ and Y~) the coordinates of Xn and Y,, 

respectively. Then {Z,} is a binary bi-martingale if and only if it satisfies (1.1), 

(1.3), and for each i and j, the sequence {X~ ~- Y~}~:I is a real-valued martingale 

(with respect to the same {,~o}~=~ as in (1.1)). This follows from the easily 

checked fact that for real numbers, if x = a x ' +  ( 1 - a ) x " ,  y = a y ' + ( 1 - a ) y " ,  

xy = a x ' y ' +  (1 - a)x"y"  and 0 < a < 1, then either x = x '  = x" or y = y '  = y". It 

is however no longer true for convex combinations of more than two points; e.g., 

(3,3;3.3) = ~(0, 0 ; 0 . 0 ) +  ~(3, 1 ; 3 . 1 ) +  ](1, 3; 1.3).  

2. Bi-convex sets 

A convex combination (x, y) = E?=I a~(xi, yi) (with a~ = 0 ,  E?=I a~ = 1) will be 

called bi-convex if either x~ = x2 . . . . .  x,~ = x or yl = y2 . . . . .  y,, = y. A set 

B is a bi-convex set if it contains all the bi-convex combinations of its elements. 

Thus, B is bi-convex if for all x C~f  and y E ~, its sections Bx .~  

{y E ~ I ( x , y ) E  B} and By ---{x E ~f l (x ,y)@ B} are convex sets. An example of 

a bi-convex set that is not convex is again B = {(x, y ) E  [0,1] × [0, 1]Ix = 0  or 

y = 0}. Another  example is the graph of the subdifferential mapping of a convex 

function (cf. [5], Theorem 23.5). 

Next, we want to define the bi-convex hull of a given subset A of ~f × 02/. 

There are two ways to proceed. 

First, define inductively the sequence of sets {An}~=~ as follows: A~ = A and 

A,+~ is the set of all bi-convex combinations of elements of A,  (for n = 1,2 . . . .  ). 

Let B = U~=~ An be the limit of this sequence. Second, let B '  be the intersection 

of all bi-convex sets that contain A. 

PROPOSITXON 2.1. B = B ' =  the smallest 3 bi-convex set containing A.  

The proof is straightforward; we will call the set obtained the hi-convex hull of 

A, and will denote it bi~co (A). 

3 Relative to set inclusion. 
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An interesting question is" does there exist an n such that, analogous to 

Caratheodory's  theorem, hi-co (A)  = An ? The answer is (in general) no. 

EXAMPLE 2.2. Let ~ = 0~ = [0, 1], and for all m = 1,2 . . . .  define 

w 2 , . = ( 1 - 2 ~ 1 ~ _ 1 , 1 - 1 ) ,  w2,.+,=(1 - 1 ,  1 - 1 ) ,  

and put Zl = Wl  = ( 0 , 0 ) .  Then wn is a bi-convex combination of zn and w._~ (for 
4 n = 2 , 3  . . . .  ), namely wn =3z .+~wn- t .  Now let A ={zn}~=~; then it can be 

checked that w. ~ A ~  but w ~  A~_~, for each n = 2 , 3  . . . .  (see Fig. 2.1). • 

Z2 

W2 

Wl, Zt 

Z4 

W3 

Z6 . ' "  

W6~-~ Z7 

I~ s ~Zs 

| 'Z 3 

Fig. 2.1. 

Note that by adding the point (1, 1) to the set A in Example 2.2, one obtains a 

closed (hence compact) set A with bi-co ( A ) ~  An for all n. 

How are hi-convex sets related to bi-martingales? 

PROPOSITION 2.3. For any set A ,  A * is a bi-convex set containing bi-co (A). 

PROOF. To see that A * is a bi-convex set, recall the tree structure in Remark 

1.5. Given a collection of m such trees, with roots z~ . . . . .  zm, where, say, 

Xl . . . . .  xm -- x, we construct for every non-negative a~," • •, an, with E~I a~ = 

1 a new tree as follows. The root is z = (x,y),  where y = ET=~ a~y~; it has m 

branches to nodes z~ . . . . .  z~, with probabilities a l , . . . ,  t~, (respectively); from 

each such node z~, we follow the corresponding given tree. This shows that if 

z~ . . . . .  zm belong to A*,  then z E A *  too. 
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The inclusion A* D A is obtained by considering constant bi-martingales; it 

implies that A * D bi-co (A). • 

REMARK 2.4. The set A,  corresponds precisely to those bi-martingales 

{Z,,}7,=, for which the limit Z= is attained at most in n steps (i.e., Z,  = Z=). 

Are the two sets A* and bi-co(A) actually equal? The following example 

shows that this is not the case in general. 

1 2 2 EXAMPLE 2.5. Again, let Y~ = ~ = [0, 1]. Let z, = (g,0), z2 = (0,~), z3 = (~, 1) 

and z4 = (1,½), then A = {z,, z2, z3, z4} is clearly a bi-convex set, i.e., A = 
bi-co(A). Let w~ = (½,½), w2= (~,~), w3= (2,2) and w4= (~,½); we will show 

that all these points belong to A * (as we will see in Section 4, A * is precisely the 

bi-convex hull of all the points z, and w~, 1 < i =< 4; it consists of the square whose 

vertices are the w~'s, together with the four line segments [wi, z~]; see Fig. 2.2). 

2" 3 

Z2,~  
W2 

W3 

W4 

Fig. 2.2. 

Z4  

Indeed, consider the following tree (see Fig. 2.3): the root is w~; every node w~ 

has two sons, zi and wi+, (where i + 1 is taken modulo 4), with probability ½ each; 

every node z~ has one son z~ only. It is easily seen that this tree defines a 
bi-martingale {Z,}7.~ with ZI = wl; the probability that A is never reached is 

zero (this happens only along the rightmost path in the tree, whose probability is 

lim,_® (½)" = 0), thus wl ~ A *. A similar construction proves that w2, w3 and w4 

belong to A * too. • 

This example points out the difference between "finite" bi-martingales (which 

generate only I,.J~=IA, = bi-co(A); see Remark 2.4), and "infinite" ones. In 

Section 4 we will make this distinction (and another one) more precise. 
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Z i  

Z t  

W2 

/ \  
Z2q Z3 Z4[ / ~  

• . [ 

Fig. 2.3. 

3. Bi-convex functions 

In the previous section we saw that bi-convex sets are not sufficient to 

characterize A *. We thus approach the problem in a dual way - -  by separation. 

In the case of convexity, it is enough to consider affine 4 functions: any point 

outside a convex set can be separated from it by such a function. However, this 

does not generalize to the bi-convex case: the corresponding bi-affine functions 

separate strictly less than the larger class of bi-convex functions. 

Let B C ~f x ~ be a bi-convex set, and let f : B --* R, where R denotes the real 

line. The function f is bi-convex (bi-affine) if f(x,.  ) is a convex (affine) function 

on Bx. = {y E ~ I ( x , y ) E B }  for all x ~ ~f, and f ( . , y )  is a convex (affine) 
function on B.y ={x ~ g T l ( x , y ) E B }  for all y E ~ ;  i.e., 

+ y) _-< x'f(x', y)+ x"/(x", y) 

and 

f(x, it 'y '  + A"y") ~ A 'f(x, y') + A"ffx, y") 

for all A ', A" > O, A' + )t" = 1, and (x', y), (x", y), (x, y '), (x, y ") E B. Note that f is 

bi-affine if we have equalities above; it has to be of the form 

I 

4 We use a.ffine for a function that is both convex and concave; it is sometimes called linear. 
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where i and j denote the coordinates of x and y, respectively, and mj, fl~, yj and 6 

are real constants. 

The following is immediate. 

PROPOSmON 3.1. Let f : B --~ R be a bi-convex function. 5 Then, for all real a, 

the set {(x ,y )E  B [f(x, y ) =  a} is a hi-convex set. 

As in the standard convex case, the converse is of course not true in general. 

We can now define the notion of separation. Let B be a bi-convex set, B D A 

(the set A is assumed fixed throughout). Then a point z E B is (strongly bi-) 

separated from A with respect to 6 B if there exists a bounded bi-convex function f 

on B such that f ( z ) > s u p f ( A ) - s u p { f ( a ) l a E A } .  Let us denote by 

ns  ( B ) (  ~ nSA ( B ) )  the set of all points z E B that cannot be separated from A ; 

thus, z E ns (B)  if and only if z E B and, for all hi-convex functions f defined on 

B, we have f ( z )  <= sup f ( A ) .  

Form Proposition 3.1 one readily obtains 

PROPOSITION 3.2. Let B be a bi-convex set, B D A. Then the set ns (B)  is 

bi-convex, and ns ( B ) D bi-co (A). 

In general, we cannot expect the opposite inclusion to hold, since even for 

ordinary convexity, the analogous assertion cannot be made: if B is a convex set 

and A C B, then the set of points in B that cannot be separated from A by a 

convex function on B need not be included in co (A). This set is, however, 

included in co (A) ,  the closed convex hull of A, and so the question arises 

whether, similarly, we can assert that ns(B) is included in hi-co (A).  The answer 

is no; this is further evidence for the non-finite dimensional character of 

bi-convexity (see Example 2.2). 

EXAMPLE 3.3. Consider again Example 2.5, and let B = ~f x ~. Let  f be a 

bi-convex function on B, and assume that it separates at least one of the points 

wl, w2, w3, w4 from A. Let  i be such that f (w,)>=f(wj)  for all 1 =<j =<4, then f 

separates w~ from A. Now f is bi-convex, thus 

f(wi ) =< lf(zi  ) "~- lf(wi-1) 

(where we define w o - w , ) .  But z, E A ,  thus f ( w ~ ) > f ( z i ) ,  which implies 

f (w i_ l )> f (w i ) ,  contradicting the choice of i. This shows that w~ E n s ( B ) f o r  

1 = i = 4. On the other hand, wl Z A ; since A is itself closed and bi-convex, it 

We always assume that the domain of definition B of a bi-convex function is a bi-convex set. 
6 The domain does indeed matter --  see Example 3.5. 
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follows that ns (B) is not included in bi-co (A).  From wi E bi-co (A)  it follows 
that ns ( B ) ~  C---bi-co {z, w, I1 =< i =< 4} (by Proposition 3.2). At  the end of this 
section we will show that actually ns (B)  = C. • 

We claimed that separation by bi-affine functions is not sufficient; the 
following example shows that bi-convex functions may indeed separate more.  

E X A M P L E  3.4. Let ~f = 0~ = [0, 1], A = {(0,0),(½,0),(0,½),(1, 1)}, B = ~ x ad 
(see Fig. 3.1). It is easy to see that bi-co (A)  consists of A together with the two 
line segments [(0, 0), (½, 0)] and [(0, 0), (0, ½)]. Consider now the following function 

f o n  B: 

j'xy, O=<x,y _-<1/2, 

f ( x , y ) =  | 
l -  3xy + 2x + 2y - 1, otherwise. 

(1) 

(o) 

(o) 

(~) (o) 
¢ ¢ 

s 

! o 

I i 

! I 

I I 

, ! 

0 • 
0 

i 
! 

! 

i 
I 

! 
! 

! 

! t 

/b . . . . . . .  -.~ 
(0) (1) 

Fig. 3.1. 

It can be checked that f(x, y) ~ 0 for all (x, y) ~ [0,1] x [0,1], [(x, y) = 0 if and 
only if (x, y) E bi-co (A),  and [ is bi-convex (actually, it is piecewise bi-affine; it is 

obtained by putting [(0,0) = f(0,½) = f(½,0) = / ( 1 ,  1) = 0, f(½,½) = ~, f(0, 1) = 
[(1,0) = 1 and f(½,1) = [(1,½)= ½, and then extending it bi-alfinely in each of the 
four small squares). Therefore,  f separates every point not  in bi-co (A)  from A ; 

thus, ns (B) = hi-co (A).  
Now let g be a bi-affine function on B ; we will show that it cannot  separate the 

(L ~) from A. Indeed,  let a, /3, y, 8 be the values of g at the points of point  i t 
A :(0,0), (½,0), (0,½), (1, 1) (respectively). Without loss of generality, assume 
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1 1 g(~ ,O=O;  thus, a, /3, T, 6 are all negative.  Using repea ted ly  the fact that g is 

bi-affine, we obtain:  

g (¼, 0) = ½g (O, O) + ' ' ' ~g (.~, 0) = ~,~ + ~/3, 

g(¼, ½) = 2g(¼, ¼) - g(-~, O) = - ½a - ½/3, 

g(~,½) = 2g(~,~)-  g(O,~) = - a - / 3  - T, 

g(~, 1) = 2g(½, ½)- g(½, O) = - 2a  - 3/3 - 2% 

g(0, 1) = 2 g ( 0 , ~ ) -  g (0 ,0)  = 23, - a,  

g(1, 1) = 2g(½, 1) - g(0, 1) = - 3a  - 6/3 - 6 7. 

But g(1, 1) = 6, thus - 3a  - 6/3 - 63' = & which is impossible since a,/3, T, 6 < 0. 

Finally, we show that the separat ion does depend  on the domain  of definition 

B (in the regular  convex case, all the separat ion is obta ined  by atfine functions, 

which can always be ex tended  to the whole space;  this is so for nei ther  convex 

nor  bi-convex functions).  

EXAMPLE 3.5. Let  ~ f = ~ = [ 0 , 2 ] ,  A = { ( x , y ) l l < x , y < 2  or x = y = l }  

(i.e., A is an open  square toge ther  with one  of its corners) .  Let  B = ~ × ~ ; then 

we claim that the points (x, 1) and (1, y),  for  l < x , y < 2 ,  belong to ns (B) .  

Indeed ,  let f be a bi-convex function on B, then 

f(x,1)<-i--~f(x,O)+ f(x,l+~) 

for e v e r y 0 < e < l .  S i n c e ( x , l + ~ ) E A  f o r l < x < 2 a n d 0 < e < l ,  w e o b t a i n  

when' e --~ 0 that  f(x, 1) =< sup f (A  ), thus (x, 1) E ns (B).  Similarly for (1, y). 

Now let B = [1,2) × [1, 2); then the following bi-convex function separates  all 

points (x, 1) and (1, y )  (for 1 < x, y < 2: 

x - l ,  y = l ,  

f ( x , y ) =  y - l ,  x = l ,  
O, otherwise.  

What  are the cont inui ty  proper t ies  of bi-convex funct ions? As we shall now 

see, they parallel  those of convex functions (cf. [5]). A real funct ion f defined on 

a set B is lower-semi-continuous at a point  2 E B if 

lim inf f ( z )  = f(~. ) 
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(or, equivalently, if liminf°_~ f ( z , )>- f ( f )  for every sequence {z,,}~,~, CB such 

that z, ~ :?). It is upper-semi-continuous at :? if 

lim sup f ( z )  = f(_~), 

and it is continuous at z? if it is both lower- and upper-semi-continuous there. 

The following results should be compared with Theorems 7.4 and 10.2 in [5]. 

Let B C ~  × ~J and let z = (x, y ) C  B. The point z is bi-relatively interior to B 

if z is interior to B relative to aft (proj~B)× aft (proj.,~B), where the affine space 

generated by a set C is denoted aft(C).  For example, let Y) = ff = [0, 1] and let 

B = { ( t , t ) [ 0 <  t < 1}, then every point of B is a relatively interior point, but 

none is bi-relatively interior. Note also that on this set B, any function f is 

bi-convex! 

PROPOSITION 3.6. Let f be a bi-convex function on a bi-convex set B, and let 

z? = (2?,)7) be a hi-relatively interior point of B. Then f is lower-semi-continuous at 

PROOF. Without loss of generality, assume f is actually interior to B. Let U 

be a closed cube around 27, and V a closed cube around )7, such that U × V C B. 

Let z = (x, y ) E  U x V; express it as a bi-convex combination of the vertices of 

U × V ,  say z = E ~  ~aiz~;then 

f (z  ) < 2 a,f(z, ), 
i 1 

which implies that f is bounded from above on U × V (by max{f(z)]  z vertex of 

u x v} ) .  

Now let (x, y) E U x V; continue the straight line (in U) through x and 2?, past 
2?, until it intersects the boundary of U at a point x'; define y' similarly. Then 
27 =,~x +)~'x' and )7 = #y +/~'y ' ,  where ,~, ,~', p., /~'=>0, ,~ + A ' = #  + p . ' =  1. 
Since f is a bi-convex function, 

f(27, 37) -_< Af (x, 37) + 'f(x',  37) <= x ,f(x, y) + h a ' f  (x, y') + x 'f(x' ,  )7). 

As (x, y)---> (2?,)7), we have )t' ~ 0 and #'--~ 0 (the boundaries of U and V are at 

a positive distance from 2? and 37, respectively). Together  with the boundedness 

from above of f on U × V, this implies that only the first term matters, thus 

f(27,)7)=< lim inf f (x ,y ) .  • 
(x,y F-,(Ly) 
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Again, let B C f x ~ and z = (x, y) E B. We say that B is locally bi-simplicial 

at z if there exist a neighborhood U of x in ~', a neighborhood V of y in ~, a 

collection of simplices S~,S~ . . . . .  S,, in .~ and a collection of simplices 

T), T2 . . . . .  7",, in ~, such that (putting S = Ui'_, S~ and T = UT' ,  T~), S x T C B 

and (U x V)A B = (U z V)71 (S x T) (compare with [5, p. 84]). Examples of 

sets that are locally bi-simplicial at all their points are sets B = C x D, wh•re 

C C ~ and D C ~' are (relatively) open convex sets, or polyhedral sets. If we 

consider again ~ =  ~3/=[0,1] and B = { ( t , t ) l O < t <  1}, then B is locally bi- 

simplicial at none of its points (although it is locally simplicial at all of them). 

PROPOSITION 3.7. Let f be a bi-convex function on a bi-convex set B, and let 

= (£, Y) E B. 1fB is locally bi-simplicial at ~, then f i s  upper-semi-continuous at 

PROOF. Without loss of generality, assume each S, has £ as one of its vertices, 

and each T, has )7 as one of its vertices (if this is not so, partition the 

corresponding simplex into smaller ones with this property). It suffices to show 

that f is upper-semi-continuous on each S~ x T,. Let x,, = ~, x, . . . . .  xp be the 

vertices of Si, and yo = )~, y~ . . . . .  y, the vertices of Ti ; then each x ~ S~ and each 

y ~ T, can be expressed as x = .Ef=o A,x, and y = Z~ 0 ~.~y~, with A,, /tt~ => 0 and 

E~-o A, = E~ 0/.t~ = 1. Hence 

r=,ft r - 0  s - 0  

As (x, y ) - *  (~,)~), we have A,,~ 1 and/.to--+ 1, thus A, ~ 0  and p,~ -+0  for all r ~  0 

and s ~ 0, implying that lira sup f(x,  y) <-<_ f(~, 9). • 

COROLLARY 3.8. Let f be a bi-convex function on a bi-convex set B. Then f is 
continuous at all its bi-relatively interior points. 

PROOF. If z is a bi-relatively interior point of B, then B is locally bi-simplicial 

at z. • 

We now complete the analysis of Examples 3.3 and 3.5. Consider first 

Example 3.3; we wish to show that ns (B)  does not contain any points outside C. 

Indeed, the function 

f(x, y) = [x -+[y 

(where [A]+ = Max{A,0} for real A), separates from A all points in the positive 

orthant with origin at w~. In a similar way the other three orthants (with origins 

w~, w2 and w3) are also separated. 
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Functions of this type, i.e. 

(3.9) f(x, y) = [g(x)]+[h(y)]+, 

where g and h are affine functions on g~ and 0~, respectively, are often useful (for 

applications, see Section 7 in [3]). In Example 3.5, they suffice to show that 

ns ( ~  × ~ )  = [1, 2) × [1, 2), 

ns ([1,2) x [1, 2)) = A 

(note that A = A *, since A is a convex set). However,  functions of this type do 

not separate everything that bi-convex functions do (see Example 3.4). 

4. Main results 

In this section we will obtain a characterization of A* by separation 

properties. The main result is Theorem 4.7; see also Theorem 4.3 (these 

correspond to (1) and (2) at the end of the Introduction.) 

In Section 3 we have defined, for every bi-convex set B that contains A, the 

set ns (B)  of all points of B that cannot be separated from A by any bi-convex 

function. As we saw in Example 3.5, one may have to apply the operator  "ns"  

repeatedly in order to obtain the desired set A* (see also Example 5.5 and 

Remark 5.7). 

Formally, one defines inductively Bo = ~ x ~, B~+~ = ns (B~) for every ordinal 

a, and B~ = i"1,<~ B, for every limit ordinal 7 a. Since n s ( B ) C B  for every ~ B, 

and B C B '  implies n s ( B ) C n s ( B ' ) ,  one obtains a non-increasing sequence of 

sets {B~}~, with limit C ~ By for some ordinal y. (In the introduction, the limit 

set C was denoted bi-co~(A).) 

PROPOSITION 4.1. The limit set C satisfies C = ns(C).  Moreover, it is the 

largest such set, i.e,, if B = ns (B)  then B CC. 

PROOF. Since C = B~ is the limit of the above sequence, we have B,+t = B~, 

or n s ( C ) = C .  If B = n s ( B ) ,  then B C B o = ~ × ~ ,  and B C B ~  for all / 3 < a  

implies B = ns (B)  C ns (B,) ,  thus B C B~ ; transfinite induction then gives B C 

B~ = C. • 

Does this set C coincide with A*?  Example 5.1 will show that this is not the 

case in general. What then is this set C? Consider Example 2.5: the points w~ 

7 Equivalently, define B, = f-'l,<o ns(B,) for every ordinal a. Note that one may take Bo = 
co (A). 

We will always assume throughout this section that B is a hi-convex set containing A. 
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(for 1 -<_ i < 4) belong to A * but not to bi-co (A). Actually, w~ can be obtained by 

a bi-martingale which a.s. reaches A in finite time (i.e., one need not go to the 

limit Z~, since on almost every path Z, E A for all n large enough; how large 

depends on the path). 

Formally, ~ let {Z,, }~=, be a bi-martingale, Z,  --~ Z~ a.s., and let {~, }~_~ be the 

corresponding sequence of (finite) fields; that is, ft, is the field generated by 

(Z,,Z_~ . . . . .  Z,) .  Put if= = lim,_= ft, (a o'-field), and denote by N the set of 

positive integers {1,2 . . . .  }. A stopping time N is a random variable with values in 

N ~ - N  U {oo}, such that the event {N = n} belongs to ,~, for every n E N~. 

Intuitively, this means that N depends only on the "past"  - -  i.e., Z~, Z2 . . . . .  ZN, 

but not on the "future" .  A stopping time N is a.s. finite if P (N < w) = 1;it  is a.s. 

bounded if there exists no < ~ such that P ( N  _-< no)-- 1. Note that if we only 

consider values of Zo that have positive probability, the finiteness of the fields ~ ,  

implies that "a.s. bounded"  is the same as "everywhere bounded",  which is the 

same as "everywhere finite" (by K6nig's .Lemma); this however differs from "a.s. 

finite" (see Fig. 2.3 for an example). 

We now define A "  as the set of all z E ~f × ~ such that there exists a 

bi-martingale {Z,}7=j with Z~ = z, together with an a.s. finite stopping time N, 

such that Zu E A (a.s.). Note that if we require the stopping time to be bounded, 

then bi-co (A)  is obtained (see Remark 2.4), whereas A * corresponds to the case 

that the stopping time need not be a.s. finite. In a similar way to Proposition 2.3, 

we have 

PROPOSITION 4.2. A ~ is a bi-convex set, satisfying 

bi-co (A)  C A '~ C A *  

Example 2.5 shows that bi-co (A)  may be a proper  subset of A #; Example 5.1 

will show that A ~ may be a proper  subset of A*.  

THEOREM 4.3. The largest set C satisfying C = ns (C) is precisely A ~ 

Thus, A " is the largest set that contains A and such that no bounded 

bi-convex function defined on A '~ can separate any of its points from A. We 

divide the proof into two parts. 

PROPOSITION 4.4. ns (A ") = A #. 

PROOF. Let z E A ~', {Z,}~=, a bi-martingale with Z, = z, and let N be an a.s. 

finite stopping time with ZN E A (a.s.). For every bounded bi-convex function f 

References for the following are, e.g., [1, Ch. 9], [4, Ch. IV-V]. 
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defined on A '~, the sequence {f(Z,)}~-, is a real bounded sub-martingale (i.e., 

E[f(Z,+~)l ~,] >= f(Z,,) for every n; this follows from the fact that f is bi-convex 

and {Z,} is a bi-martingale"J). Since N is an a.s. finite stopping time, we obtain 

f (z )  = f (Z,)  <= E(f(ZN)). But ZN @ A a.s., thus f(ZN) <= sup f (A ), hence f ( z )  <- 
sup f (A  ), which proves that z C ns (A ~). • 

PROPOSITION 4.5. Let B satisfy B = ns(B).  Then B C A ~. 

PROOF. Define a r ea l  function ~=-~B on B by ~ ( z ) = i n f P ( Z , ~ A  for all 

n >_-1) for every z E B, where the infimum is taken over all bi-martingales 

{Z,}~_, with Z, : z and Z, C B for all n _-> 1. If is straightforward to check that q0 

is a non-negative bi-convex function on B, and moreover that 9 ( a ) =  0 for all 

a C A. Since ns (B)  = B we cannot separate by ~o, thus ~0(z) = 0 for all z C B. 

Now 1 - ~ ( z ) = s u p P ( Z ,  C A  for some n => 1 ) = s u p P ( Z N  C A ) ,  the supre- 

mum being taken over all hi-martingales {Z,}~=~ as above and over all a.s. finite 

stopping times N. Therefore it remains to prove that this supremum is achieved 

for each z C B. This is a standard argument' t ;  we will briefly sketch it here. 

Choose 0 < p < l ;  for every z CB,  q~(z)=0;  hence there exists a bi- 

martingale {Zo}:~, together with a stopping time N, such that Z, = z, Zo E B for 

all n, P ( N < o o ) :  1, and P(ZN C A ) > p ;  since once A is reached, the bi- 

martingale can remain constant, we may replace N by an integer m -= re (z )  

large enough, such that P ( Z m C A ) > p .  (We will say that {Z,} and m(z)  
"correspond"  to z.) 

Consider the bi-martingale {Zo} corresponding to z, and follow it up to step 

m = re(z) ;  from each point z ' =  Zm that does not belong to A (but does 

however belong to B), continue with the bi-martingale corresponding to z ' ,  for 

m(z')  more steps, and so on. The total probability that A is reached in finite 

time is then at least 
p+(l--p)p+(l--p)2p+''', 

which converges to 1. This completes the proof. • 

PROOF OF THEOREM 4.3. Propositions 4.4 and 4.5 give the two inclusions 

A "  C C and C C A ~, respectively. • 

We have thus seen that separating by all bi-convex functions leads to A ~, 

which is included in A *. Now we will show that suitably restricting the family of 

functions used for separation leads to A*.  

to Note that Z, E A" for all n, thus f(Z,) is well defined. 
it E.g., it follows from Corollary 3.8.1 in [2]. 
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Let B be a bi-convex set containing A. Let %~(B) =- ~A (B) be the set of all real 

functions on B that are bi-convex, bounded, and continuous at each point of A 

(continuity is not required on all B, but just on A).  Note that functions of the 

type (3.9) belong to ~ ( B )  for any B. Let nsc (B) be the set of all z E B that are 

not separated from A by any f E ~ ( B ) ;  that is, such that f ( z )  <-<_ sup f ( A  ) for all 

f ~ CO(B). One immediately obtains 

PROPOSmON 4.6. For every B, the set nsc(B)  is bi-convex, and n s ( B ) C  

nsc (B) C B. 

We now define the set D as the largest set such that nsc ( D ) =  D. As was the 

case for the set C, we obtain D as the limit of the sequence {Bo}~, where 

Bo = ~ x 0~ and Be = N ~<~ nsc (B~) for all ordinals a. (In the introduction, the 

limit set D was denoted bi-co*(A).) 

THEOREM 4.7. Assume A is a closed set. Then the largest set D satisfying 

D = nsc (D)  is precisely A * 

Thus, A* is the largest set that contains A, and such that no bi-convex 

function defined on A * and continuous on A, can separate any point in A * from 

A. 

PROOF. It will follow from Propositions 4.8 and 4.9. 

PROPOSITION 4.8. nsc (A*)  = A * 

PaOOF. Let z E A * ,  {Z,}~I a bi-martingale with Z ~ = z ,  Zn-->Z~, 

P ( Z ~ E A ) = I ,  and let fEC~(A*) .  Since Z n E A *  for all n, we obtain a 

bounded (real) sub-martingale {f(Zn)}7=~; moreover,  Z ~ E  A implies 

f ( Z n ) - *  f(Z~),  therefore f ( z  ) = f (  Z 0 <-<_ E (f(Z~)) <= sup f ( A  ). • 

PROPOSITION 4.9. Assume A is a closed set, and let B satisfy B = nsc(B).  

Then B C A *  

PROOF. For every z, let d(z, A )  denote the distance of z from the set A ; A 

being a closed set, d (z, A ) = 0 if and only if z @ A. Define a real function ~b - ~B 
on B by ~b(z)= i n f E [ d ( Z ~ , A ) ]  for every z E B, where the infimum is taken 

over all hi-martingales {Z,}~I satisfying Z~ = z, Z ,  @ B for all n, and Z~--*Z~ 

(a.s.). It is again easy to see that ~b is a bounded bi-convex function. One possible 

bi-martingale for z is the constant one (namely, Z,  = z for all n); therefore 

~ ( z )  <= d(z,  A ), which shows that ~b vanishes and is continuous at every point of 

A. But B = nsc (B), hence ~b does not separate any point of B from A - -  thus ~b 

is identically zero on all B. 



176 R . J .  A U M A N N  AND S. H A R T  Isr. J. Math. 

To complete the proof we will now show that the infimum in the definition of 
O(z) is indeed achieved 12 for all z @B. Since Z,--*Z® implies 

d(Z , ,A ) - -~d (Z~ ,A) ,  we have E[d(Zn, A)]--~E[d(Z~,A)];  therefore, for 

every z E B and every p > 0  there exists a bi-martingale {Z,}7=1 (with Z~ = z 

and Z, E B for all n), and an integer m such that E[d(Z, . ,A)]  < p. After stage 

m, continue with bi-martingales corresponding to each z ' =  Z,. and p/2, for 

m ' =  m'(z') more steps; follow then bi-martingales corresponding to z" = Z,,+,,, 

and 0/3, and so on. This construction yields a new bi-martingale {2n}7:~ with 

Z,~ = z and Z E B for all n ; let 2~ be its a.s. limit. We also obtain an increasing 

sequence {N~}~=~ of finite stopping times (N~ = m, N2 = m + m ' , . . .  ) such that 

E[d(,~Nk, A )] < p/k for all k _-> 1. Therefore E[d(Z~, A )] = 0. • 

REMARK 4.10. It can be easily checked in the proof of Proposition 4.8 that it 

suffices for f to be just upper-semi-continuous rather than continuous at each 

point of A. Therefore Theorem 4.7 remains true if one allows separation by this 

type of bounded bi-convex functions too. In what regards checking upper-semi- 

continuity, recall Proposition 3.7. 

REMARK 4.11. The finiteness of the fields o~. does not play any role in the 

proofs of Propositions 4.4 and 4.8. Together with Theorems 4.3 and 4.7, this 

implies that neither A # nor A * will change if this finiteness condition is dropped 

from the definition of a bi-martingale. 

5. Examples 

This section is devoted to three examples, settling (in the negative) some 

questions regarding A*: 

1. Is A ~ equal to A*? 

2. Is (A*)* equal to A*? 

3. If A is a closed set, is A* closed too? 

Since the motivation for the study of A * came from game theory (see [3]), we 

will take in all three examples the set A to be compact and piecewise algebraic 

(i.e., a finite union of sets defined by algebraic functions). It is thus conjectured 

that the same phenomena appear in the game theoretic context as well. 

All three examples use an idea similar to Example 2.2; however, by making 

each of the two spaces ~ and ~ two-dimensional, one can obtain a kind of a 

"rotating staircase", which eliminates unwanted interaction between the various 

"steps". To get a geometric picture, imagine in Fig. 2.1 that ff~ becomes 

~2 Again, one may apply Corollary 3.8.1 in [2]. 
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two-dimensional - -  a plane perpendicular to the page - -  whereas ~ remains 

one-dimensional; " ro t a t e"  slightly each of the "s teps"  w2z3, w4z5 . . . .  in the 

~-plane,  around w3, w5 . . . .  (respectively). 

EXAMPLE 5.1. Let ~ = ~ = [0, 1] 2 CR 2. Let  T = [0,0.2]; for every t E T, let 13 

b, =(1,3t-2t2;2t ,4t2) ,  c, =(t, t2;1,3t-2t2) ,  

d, = (2t, 4t2 ; 2t, 4t2), e, = (t, t2; 2t, 4t2). 

Let B ={b,},~T, C={C,},~T, D ={d,},zrx~oj, E ={e,}teT\{OI, and define A = 

B U C O {O}, where O = (0,0;0,0).  

PROPOSITION 5.2. (1) D U E C A * 

(2) ( D O E ) f q A  # = O .  

PROOF. (1) For  every t E T, t ~  0, we have 

1 - 2 t  
d, = ~ b, + ~ e, (y constant), 

t 1 - 2 t .  
e, = ~ c, + ~ d,/2 (x constant). 

We thus obtain a bi-martingale, represented in tree form in Fig. 5.1. As t---> 0, 

both d, and e, converge to O E A ; therefore the above bi-martingale converges 

a, 

c 4  "'t 

Fig. 5.1. 

,3 We  wri te  a point  z as z = (x ~t~, x~l; y"~, y~ ) ,  where  x = (x <~, x .2~) E • and y = (y¢~, yt2~) E ~d. 
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to A with probability one (recall that all b, and c, belong to A).  Similarly for e,, 

showing that d, and e, belong to A * for all t E T \ {0}. 

(2) Let {Z.}~=l be a bi-martingale in ~ × ~ and let N be an a.s. finite stopping 

time, with Z1 = d, (for some t E T, t ~  0) and ZN E A (a.s.). Define now the sets 

F+={zE~×~[x '2 '>Oandy '2 '>O},  Fo={ZEg~xO~lx'2'=y'2)=O}, 

and F = F+ U Fo. Since F is a convex set and F D  A, we obtain F D  A s. 

Therefore Z,  E F for all n. Moreover, Z.  E F~ implies Z,+I E F+, since x (2) and 

y~2) cannot both change. But Z1 = d, E F+, therefore Z,  E F+ for all n, hence 

ZN E F+, which implies that d, E (A fq F÷) #. Now z E A f3 F+ implies z = b, or 

z=c ,  for some 0< t=<0 .2 ,  hence x")+y(')_->l. From this it follows that 

xO)+ yO)__> 1 for every z E co(A M F+), hence for every z E (A f3 F+) ", but d, 

does not satisfy this inequality. Similarly for e,. • 

It is instructive to compute q~ - q~,~ for B = ~ x ~ in this example (see the 

proof of Proposition 4.5). By considering the bi-martingale constructed in the 

proof of (1) above, we have (put t, -= t/2"): 

q~(d,)= f i  {1-2t"]z=(1-2t)2 ,  
,=o \ 1 - t ,  1 

and 

q~(e,) = - i ~ -  = \ 1---~,  = (1 -2 t ) (1  - t). 

As t--~ 0, both d,--~ O and e,--~ O, but q~ (d,)--~ 1 and q~ (e,)--~ 1; since q~ (O)  = 0, 

q~ is indeed not continuous at O (which belongs to A).  
The next example shows that the * operator is not idempotent; namely, in 

general (A *)* ~ A *. Actually, we will even show that (A2)* ~ A *, where A2 is 
the set of all bi-convex combinations of the elements of A (see Section 2). 

Note, however, that (A"~) # =  A # (if N~ and N2-= N2(oJu,) are a.s. finite 

stopping times, then so is N,+N2) .  Thus, Example 5.3 provides a further 

instance of the "*"  operator being different from the " #  " o n e  (indeed: we must 

have either A * # A #, or A * = A # ~  B and then B* # B#). 

EXAMPLE 5.3. Let f f ' = @ = [ - 1 , 1 ] 2 C R  2. Let T=[0 ,0 .2 ] ,  and define the 

sets B, C, D and E as in Example 5.1. Let g = ( - 1 , 0 ; 0 , 0 ) ,  and put A = 

B u c u{g}. 

PROPOSITION 5.4. (1) 0 EA2 (where O = (0,0;0,0)). 

(2) D U E C(A2)*. 

(3) ( D U E ) M A * = O .  
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PROOF. (1) O = ½g + ~bo (y is constant). 

(2) Follows immediately from Proposition 5.2(1) and (1) above. 

(3) Define the sets F. ,  Fo and F as in the proof of Proposition 5.2(2). Since 

A C F  and F is a convex set, we obtain A * C F .  

Let z C A* n F+; we will show that z ~  D U E. Let {Z,}7-1 be a bi-martingale, 

ZI = z, Z ,  ~ Z~, Z~ E A (a.s.). As in the previous Proposition, we again obtain 

Z, E A * N F +  for all n. 

Consider the function 

f ( Z )  = f(X 0), X(2); y(~), y(2)) = [ _  x(l)]+[y(2)]+ 

(see (3.9)). It is a bi-convex, bounded and continuous function, It vanishes on A 

(since x( ' )<0  only at g, where y~2)=0), thus it must vanish on A* (by 

Proposition 4.8). Therefore Z,  E A* n F+ implies 0 =  < X~ ) (= the first ~5 

coordinate of Zo) hence 0_- < X~ ). Hence Z~ cannot equal g, and we have 

Z ~ E  B U C (a.s.) and z E (B U C)*. 

Finally, X")+ y") => 1 on B U C, thus on (B U C)*; but this is not so on D U.E, 
completing the proof that (D U E)  n A * = O. • 

The last example is concerned with topological properties of A * and the other 

sets we dealt with: bi-co (A) and A "% If A is a closed set, so will be each of the 

sets A, for n _-> 2 (see Section 2). However, it may well be the case that none of 

bi-co (A), A '~ and A * are closed. 

EXAMPLE 5.5. Let ~ f = ~ = [ - 1 , 1 ] 2 C R  2. Let T=[0 ,0 .1] ,  T '=[0.1,0.2] ,  

and define for every t E T U T' = [0, 0.2] 

b, = ( -  1, - 3t - 2t2; t, t2), c, = (2t, 4t2; - 1, - 3t - 2t2), 

d, =(t ,  t2;t, t2), e, =(2t ,4t2; t ,  t2). 

Let B = {b,},~r, C = {C,},~T, D = {d,},~r\~o~, D ' =  {d,},~r,, E = { e , } , e r \ / o l ,  and put 
A = B O C U D ' .  

PROPOSITION 5.6. (1) D 13 E Cbi-co(A).  

(2) O = ( O , O ; O , O ) f f . A * .  

Since d,, e, ~ O as t ~ 0, the point O belongs to the closure of each one of the 

sets bi-co (A), A* and A *, but does not belong to any one of these sets. 

PROOF. (1) For every t E T\{0}, d, is a bi-convex combination of b, and e, 

(with y constant), and e, is a bi-convex combination of c, and d2, (with x 

constant). Therefore bi-co (A) contains e, for all 0.1/2 -< t _-< 0.2/2, hence d, for 
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all those t, hence e, for  all 0.1/4 < t _--- 0.2/4, and so on. Thus  d,, e, E bi-co ( A )  for  

all 0 <  t =<0.1. 

(2) Let  F = { z E ~ f × ~ l x ' 2 ' = < O  and y(2'=<0} and F o = { Z E ~ X ~ l x  '2 '=  

yt2) = 0}. We  claim that  A * N F = A * f3 Fo. Indeed ,  for  every  u > 0 consider  the 

funct ion [ - 3u - 2u 2 - xt2)]+[u 2 - yt2)].. It vanishes on A (since only b,, for  t > u, 

satisfies x t2) < - 3u - 2u2; but  then  u 2 - yt2) = u 2 _ t 2 < 0). T h e r e f o r e  it vanishes 

on A * .  Let  z E A *  with x t2)<0;  then  x~2)< - 3 u  - 2 u  2 for  some  u > 0  (small 

enough) ,  hence  yt2)>_-u2>0. In a similar way, y t2 )<0  implies x t2)>0 ,  thus 

z E A * fq F only when  X (2) = y ( 2 )  = 0, or  Z E A * f3 Fo. 

Cons ider  now a b i -mar t ingale  {Zo}7=, with ZI  = O, Z,---> Z®, Z ~ E  A (a.s.). 

We  claim that  Z ,  E A * f3/7o implies Z.+1 E A * f3 Fo. Indeed ,  assume wi thout  

loss of  genera l i ty  that  Xn+l = Xn. Then  ,,v~2),+, = X~) = 0 and ,~ ~- .+~ ~ l  v~2) ] ~ , )  = -,v~2) = 

0. If V ~2) < v<2) = 0 ;  thus v~2) = 0  --n+l = 0 ,  then Z,+l E A *  f3 F = A *  f3 Fo, or  --,+~ - - , . ,  

th roughout .  Now Z,  = O E A * N Fo, the re fo re  Z ,  E A * Iq Fo for all n, implying 

that  Z~ E Fo. But  A n Fo = {bo, co}, thus O E {bo, Co}*, which is clearly impossible  

(both bo and Co satisfy x " ) +  y ~ =  1). • 

REMARK 5.7. In E x a m p l e  5.5, the point  O is a bi-relat ively inter ior  point  of  

x ~,  the re fore  any bi -convex funct ion is con t inuous  there  (recall Coro l la ry  

3.8). T h e r e f o r e  O belongs to bo th  ns ( ~  x o-#) and nsc ( ~  x 0td). This shows that  

even if A is a closed set - -  as in E x a m p l e  5.5 - -  one  may  have  to apply  the 

ope ra to r s  ns and nsc m o r e  than  once in o rder  to obta in  A * and A *, respect ively  

(in E x a m p l e  3.5, the set A was not  closed). 
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